Instance spaces for machine learning classification
نویسندگان
چکیده
منابع مشابه
Learning Instance Specific Distance for Multi-Instance Classification
Multi-Instance Learning (MIL) deals with problems where each training example is a bag, and each bag contains a set of instances. Multi-instance representation is useful in many real world applications, because it is able to capture more structural information than traditional flat single-instance representation. However, it also brings new challenges. Specifically, the distance between data ob...
متن کاملMultiple-Instance Learning for Natural Scene Classification
Multiple-Instance learning is a way of mod-eling ambiguity in supervised learning examples. Each example is a bag of instances, but only the bag is labeled-not the individual instances. A bag is labeled negative if all the instances are negative, and positive if at least one of the instances in positive. We apply the Multiple-Instance learning framework to the problem of learning how to classif...
متن کاملMultiple Instance Learning for Malware Classification
This work addresses classification of unknown binaries executed in sandbox by modeling their interaction with system resources (files, mutexes, registry keys and communication with servers over the network) and error messages provided by the operating system, using vocabulary-based method from the multiple instance learning paradigm. It introduces similarities suitable for individual resource t...
متن کاملComparison of Machine Learning Algorithms for Broad Leaf Species Classification Using UAV-RGB Images
Abstract: Knowing the tree species combination of forests provides valuable information for studying the forest’s economic value, fire risk assessment, biodiversity monitoring, and wildlife habitat improvement. Fieldwork is often time-consuming and labor-required, free satellite data are available in coarse resolution and the use of manned aircraft is relatively costly. Recently, unmanned aeria...
متن کاملBody Mass Index Classification based on Facial Features using Machine Learning Algorithms for utilizing in Telemedicine
Background and Objectives: Due to the impact of controlling BMI on life, BMI classification based on facial features can be used for developing Telemedicine systems and eliminating the limitations of measuring tools, especially for paralyzed people. So that physicians can help people online during the Covid-19 pandemic. Method: In this study, new features and some previous work features were e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Machine Learning
سال: 2017
ISSN: 0885-6125,1573-0565
DOI: 10.1007/s10994-017-5629-5